May 1, 2024, 4:46 a.m. | Arpit Garg, Cuong Nguyen, Rafael Felix, Thanh-Toan Do, Gustavo Carneiro

cs.CV updates on arXiv.org arxiv.org

arXiv:2303.10802v2 Announce Type: replace
Abstract: The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects. This has, therefore, motivated the emergence of learning with noisy-label (LNL) techniques that focus on separating noisy- and clean-label samples to apply different learning strategies to each group of samples. Current methodologies often rely on the small-loss hypothesis or feature-based selection to separate noisy- and clean-label samples, yet our empirical observations reveal their limitations, especially for labels with instance dependent …

abstract agreement apply arxiv challenge cs.cv deep learning effects emergence focus labels overfitting peer sample samples strategies training type

Senior Machine Learning Engineer

@ GPTZero | Toronto, Canada

ML/AI Engineer / NLP Expert - Custom LLM Development (x/f/m)

@ HelloBetter | Remote

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Technical Program Manager, Expert AI Trainer Acquisition & Engagement

@ OpenAI | San Francisco, CA

Director, Data Engineering

@ PatientPoint | Cincinnati, Ohio, United States